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Abstract—Rate adaptation is a mechanism critical for maxi-
mizing the throughput of 802.11 systems. In this paper, inspired
by the observation that the packet success rate under different
data rates is not independent, we model the rate adaptation
problem as a multi-armed bandit (MAB) problem with correlated
arms. Two MAB-based rate adaptation algorithms are developed
in which the correlation between data rates is exploited to
accelerate the convergence of the algorithms. To verify the per-
formance of our algorithms, we build up an indoor 802.11n test
bed. The proposed rate adaptation algorithms are implemented
and deployed on the test bed. Both simulation and test-bed
experiments demonstrate the superiority of our algorithms in
stationary and non-stationary radio environments.

I. INTRODUCTION

Rate adaptation is an essential mechanism in 802.11 or
Wi-Fi systems that adapts the physical data rate to the time-
varying radio environment in order to maximize the expected
throughput. In current 802.11 systems, the physical data rate
depends on parameters including the Modulation and Coding
Scheme (MCS), channel bandwidth, guard interval, and the
number of spatial streams. As a result, the rate adaptation mod-
ule is responsible for tuning these parameters simultaneously
and selecting rates that yield the highest expected throughput
from a large set of candidate rates.

Existing rate adaptation schemes can be broadly classified
into two categories: one that relies on channel estimation
and another on rate sampling. In the first category [1]–[5],
the channel state information (CSI) such as Received Signal
Strength Indicator (RSSI) or Signal-to-Noise Ratio (SNR) is
assumed to be available. The CSI is used to estimate the
probability of successful packet transmission at different rates,
based on which a suitable rate is then selected. The major
disadvantage of CSI-based rate adaptation is that system per-
formance can be significantly reduced if the CSI measurements
are inaccurate. In addition, most commercial Wi-Fi devices do
not support CSI feedback at the transmitter.

In the absence of CSI, the second type of rate adaptation
scheme estimates the performance of each rate directly by
sampling. Different rates are sampled for packet transmission,
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and the acknowledgement (ACK) feedback is used to estimate
the probability of success of the corresponding rate. The
optimal rates are learned over time from the history of trans-
missions and outcomes. Due to its simplicity, this sampling-
based rate adaptation is widely employed in current Wi-Fi
systems, and popular algorithms include Minstrel [6] and its
variant Minstrel HT [7], SampleRate [8], Auto Rate Fall-
back [9], etc. These algorithms primarily use well-engineered
heuristics to sample rates. Examples of common rules include
increasing rate upon success, decreasing rate upon failure,
and assessing unused rates randomly using probe packets.
While heuristic algorithms work well in simple scenarios, their
efficiency has been questioned as Wi-Fi standards evolve and
much more rates are available.

The key to sampling-based rate adaptation is the balance
between exploration and exploitation. On the one hand, it
needs to explore different rates to obtain more accurate infor-
mation. On the other hand, it needs to exploit this information
to transmit at optimal rates to gain throughput. As the number
of available rates increases, it becomes more challenging to
strike a balance between exploration and exploitation.

To overcome this challenge, researchers have recently
considered introducing machine learning techniques like re-
inforcement learning [10], [11], neural network [12], and
bayesian learning [13] to rate adaptation. Among these
methods, the MAB algorithms such as Thompson Sampling
(TS) [14]–[16] and Kullback-Leibler Upper-Confidence Bound
(KL-UCB) [17] are especially popular due to their efficient
sampling mechanism. However, these classical bandit algo-
rithms exhibit two main limitations in the rate adaptation
problem. First, the classical bandit algorithms assume that the
rewards of different rates are independent, which is unlikely
true. We know that the success probabilities of different rate
are correlated. Second, the algorithms are usually designed for
stationary environments, assuming each rate’s reward follows a
fixed distribution. However, in most cases, the wireless channel
is non-stationary, and the reward distribution is time-varying.
Regarding the first limitation, [17] uses a graph to model the
correlations between rates in an 802.11n system. But the graph
is constructed using observations and empirical results, and
therefore is unable to be applicable to other radio environments
or different Wi-Fi standards. Regarding the second limitation,
[18] studied a contextual bandit model with CSI as a context.

In this paper, we propose a class of rate adaptation algo-



rithms with correlated MAB. The main contributions of the
paper are summarized as follows.

• We introduce a correlated MAB model for the rate adap-
tation problem. The correlation between different rates is
measured as pseudo-rewards. We construct the pseudo-
rewards information according to some prior knowledge
about the rate adaptation problem. Under the correlated
MAB model, we develop two rate adaptation algorithms,
C-KLUCB and C-TS, based on KL-UCB and TS, re-
spectively. For non-stationary environments, we apply a
sliding-window mechanism on C-KLUCB and C-TS to
track the optimal rate online.

• We set up an indoor 802.11n test bed to evaluate the ac-
tual performance of different rate adaptation algorithms.
The rate adaptation module is re-designed into two parts,
one in the kernel space and the other in the user space.
This separated design allows different rate adaptation
algorithms to be efficiently implemented and deployed
in the user space.

• We conduct both simulation and test-bed experiments in
different channel environments to compare the perfor-
mance of the proposed rate adaptation algorithms with
some existing rate adaptation algorithms. The results
show that our algorithms have an advantage in speed in
identifying the appropriate rate.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a single link consisting of a pair of transmitter
and receiver implementing the IEEE 802.11 standard. Time
is divided into slots which are indexed by t = 1, 2, . . .. At
each time slot t, let h(t) denote the channel state and r(t) ∈
R denote the selected rate for packet transmission, where R
denotes the set of available rates. Furthermore, let pr(t) denote
the probability of successful transmission at rate r at time slot
t. The objective of rate adaptation is to maximize the expected
throughput by having the link transmit at the optimal rate in
each time slot, that is,

r∗(t) = argmax
r(t)∈R

pr(t)(t) · r(t). (1)

However, in practice, the probabilities pr(t) for all r ∈ R are
unknown in advance, necessitating the use of online learning
algorithms that learn the optimal rate over time from observed
past transmission successes and failures.

We denote by Xr(t) the outcome of the transmission at
rate r at time slot t. Specifically, Xr(t) = 1 indicates a
successful transmission and Xr(t) = 0 indicates a failed
transmission. So Xr(t) is a Bernoulli random variable with
parameter pr(t), and we have E[Xr(t)] = pr(t). At the end of
each time slot, Xr(t) is fed back to the transmitter to facilitate
its decision on the rate for the next time slot. Let π denote
an online learning policy that outputs a sequence of selected
rates rπ(1), rπ(2), . . . , rπ(T ) over a given time horizon T .

Note that the choices rπ(t) might be stochastic. The expected
throughput under policy π can be found by

E

[
1

T

T∑
t=1

rπ(t) ·Xrπ(t)(t)

]
=

1

T

T∑
t=1

E[rπ(t) · prπ(t)(t)] (2)

where the expectation on the left side of the equation is taken
with respect to the random draw of both transmission outcome
and the policy’s selection of rate.

To quantify the performance of policy π, we consider
the pseudo-regret, which is defined as the loss in expected
throughput due to transmission at sub-optimal rates, i.e.,

Reg(T ) =
1

T

T∑
t=1

r∗(t) · pr∗(t)(t)−
1

T

T∑
t=1

E[rπ(t) · prπ(t)(t)].

(3)
In a special case when the environment is stationary, and the

channel state is time-invariant, i.e., h(t) = h(t′) for t ̸= t′, we
expect that the success probabilities of rates remain constant,
i.e., pr(t) = pr for t = 1, . . . , T and for all r ∈ R. In such
case, the optimal rate remains the same in all time slots, which
is given by r∗ = argmaxr∈R pr ·r. The goal of rate adaptation
reduces to identify the best rate. The pseudo-regret can be
written as

Reg(T ) = r∗ · pr∗ −
1

T

T∑
t=1

E[rπ(t) · prπ(t)]

=
1

T

∑
r∈R

(r∗ − r)E[nπ
r (T )], (4)

where nπ
r (T ) denotes the attempt number of rate r following

policy π over time horizon T .
We now formulate the rate adaptation problem as finding

a policy π that minimizes the pseudo-regret Reg(T ), which
is given by (3) in a non-stationary environment and (4) in a
stationary environment. It is expected that in a real commu-
nication environment, the channel state is unlikely to change
significantly in all time slots. Therefore, for a non-stationary
environment, we assume that the channel state changes slowly;
namely, the environment is piece-wise stationary, allowing us
to design rate adaptation algorithms to efficiently track the
optimal rate for transmission.

The challenge of the rate adaptation problem lies in bal-
ancing between staying with the rate that yielded the highest
throughput in the past and exploring new rates that might yield
higher throughput in the future. In the next section, we model
the problem under the framework of the multi-armed bandit,
which naturally addresses the fundamental trade-off between
exploration and exploitation. In particular, some structure of
the problem is exploited to reduce the amount of exploration
and speed up the search for the optimal rate.

III. RATE ADAPTATION WITH CORRELATED BANDIT

We model the rate adaptation problem as a multi-armed
bandit problem. Each candidate rate r ∈ R is treated as an
arm, and the reward of the arm r at time slot t is Xr(t)
following a Bernoulli distribution with parameter pr(t). In the



classical multi-armed bandit setting, the rewards associated
with different arms are assumed to be independent. That is,
the observed reward of pulling an arm r does not provide any
information about the reward distribution of another arm r′.
However, this is not the case in the rate adaptation problem,
as the success probabilities of different rates are related. For
instance, given a channel state h(t), if a transmission at rate r
is successful, then transmissions at rates smaller than r are
likely to be successful as well. We take advantage of this
property and study the rate adaptation problem as the multi-
armed bandit with correlated arms.

In the following, we will first describe the correlated multi-
armed bandit model and introduce the concept of pseudo-
rewards. Next, we will discuss the construction of pseudo-
rewards, followed by rate adaptation algorithms. For ease
of presentation, we focus on the stationary environment in
Section III-A to C and discuss the non-stationary environment
at the end in Section III-D.

A. Correlated multi-armed bandit model

In the multi-armed bandit problem, the mean rewards pr
of all arms, i.e., rates r ∈ R are unknown. In each time
slot, the algorithm chooses an arm r and collects a random
reward Xr ∈ {0, 1} for this arm. Note that E[Xr] = pr. As
mentioned earlier, the classical bandit model assumes that the
mean rewards of different arms are independent. Therefore
the collected reward Xr is only used to update the estimate
of pr but not the estimate of pr′ for r′ ̸= r. In other words,
the estimate of the mean reward of an arm is updated only
when that arm is chosen. Such practice could be inefficient if
the rewards across the arms are correlated, e.g., Xr can also
be used to update the estimate of pr′ when Xr′ and Xr are
correlated.

Given two correlated arms r and r′, according to the law
of total expectation, we know that

E[Xr′ ] = E[Xr′ |Xr = 1] · Pr{Xr = 1} (5)
+ E[Xr′ |Xr = 0] · Pr{Xr = 0}

= E[Xr′ |Xr = 1] · E[Xr]

+ E[Xr′ |Xr = 0] · (1− E[Xr]).

So we can approximate E[Xr′ ] if we have some information
of E[Xr], E[Xr′ |Xr = 1] and E[Xr′ |Xr = 0]. The bandit
algorithm is estimating E[Xr]. But regarding E[Xr′ |Xr = 1]
and E[Xr′ |Xr = 0], in reality, they are impossible to be
acquired since two arms cannot be pulled at the same time.
Still, we can extract some information about them based
on domain knowledge. For instance, if a transmission at
rate r is successful, then with high probability transmissions
at rates smaller than r are also successful, which suggests
E[Xr′ |Xr = 1] ≈ 1 for r′ < r. Following [19], we call
these knowledge-based information as pseudo-rewards. We
denote by γr′|r(x) the pseudo-reward of arm r′ conditional
on Xr = x for x = 1 or x = 0. In the next subsection, we
will discuss some heuristics to construct the pseudo-rewards.

By (5), given some pseudo-rewards γr′|r(1) and γr′|r(0), an
estimate of E[Xr′ ] with reference to arm r, denoted by p̃r′|r,
can be computed by

p̃r′|r = γr′|r(1) · p̃r + γr′|r(0) · (1− p̃r), (6)

where p̃r is the empirical success probability of rate r learned
from the collected outcomes of pulling arm r. By default, we
set γr′|r′(1) = 1 and γr′|r′(0) = 0. As a result, p̃r′|r′ = p̃r′ .

We see that p̃r′|r will be updated once p̃r is updated, i.e.,
when arm r is pulled. Therefore in every time slot, there is
always one of p̃r′|r for r ∈ R that will be updated. We use
p̃r′|r for r ∈ R together as a reference to decide whether arm
r′ is worth exploring. The rationale behind the idea is that p̃r′|r
is updated more frequently than p̃r′ , thus providing more fresh
information about arm r′. Even though the fresh information
can be very sketchy, it can help to reduce the amount of
exploration. Details of the algorithm will be explained in
Section III-C.

B. Construction of pseudo-reward

Since p̃r′|r is just a reference for exploration, its accuracy
is not required, and so are the pseudo-rewards. We incorporate
the domain knowledge about correlations between arms in
the construction of pseudo-reward. Meanwhile, we make the
following assumptions:
(1) If a transmission at rate r succeeds, transmissions at lower

rates r′ for r′ < r will also succeed.
(2) If a transmission at rate r succeeds, transmissions at

higher rates r′ for r′ > r may also succeed.
(3) If a transmission at rate r fails, transmissions at higher

rates r′ for r′ > r will also fail.
(4) If a transmission at rate r fails, transmissions at lower

rates r′ for r′ < r may still succeed.
Accordingly, for any r, r′ ∈ R, the pseudo-rewards are given
by

γr′|r(1) = 1, γr′|r(0) =

{
0, r′ ≥ r

1, r′ < r.
(7)

Such choices of pseudo-rewards provide an optimistic estimate
of p̃r′|r, so as not to miss the exploration of certain potential
rates. It needs to be mentioned that when all pseudo-rewards
are set to 1, p̃r′|r = 1, offering no extra information than p̃r′ ,
and thus the correlated bandit algorithm will perform the same
as the standard bandit algorithm.

Finally, for notation simplicity, we use two matrices Γ0 and
Γ1 of dimension |R| × |R| to describe the complete pseudo-
rewards of all pairs of rates. The (i, j)-th entries in Γ0 and Γ1

correspond to γri|rj (0) and γri|rj (1), respectively.

C. Correlated bandit algorithms for rate adaptation

We now introduce the correlated bandit algorithms which
borrow the idea from [19]. Compared to the standard bandit
algorithms, the main difference of these algorithms is that they
shrink the search space of optimal rate with the help of p̃r′|r.

To be specific, in each time slot t, the algorithm maintains
the following parameters:



• p̃r(t), r ∈ R: the empirical success probability of rate r.
• p̃r′|r(t), r, r′ ∈ R: the estimate of mean reward of rate

r′ with reference to rate r.
• nr(t): the number of times rate r is chosen up to time t.
• ns

r(t): the number of times rate r is chosen and the
transmission is successful.

• St = {r ∈ R : nr(t) ≥ t
|R|}: the set of rates that has

been selected more than a certain number of times.
• At ⊆ R: the set of candidate rates for exploration.

The empirically optimal rate is r̃∗(t) = argmaxr∈St
r · p̃r(t).

We define At = {r ∈ R : r = r̃∗(t) or mink∈St
r · p̃r|k(t) ≥

r̃∗(t) · p̃r̃∗(t)(t)}. Then KL-UCB and Thompson sampling can
be used to sample a rate from At to execute.

In KL-UCB, the upper-confidence bound of rate r’s success
probability is computed by:

qr(t) = max
{
q ∈ [0, 1] :nk(t) · d

(ns
k(t)

nk(t)
, q
)

≤ log(t) + c · log
(
log(t)

)}
, (8)

where c ≥ 3 is a positive constant, d(x, y) denotes the KL di-
vergence between two Bernoulli distributions with means x, y
and is defined as d(x, y) = x · log(xy )+(1−x) · log( 1−x

1−y ). The
correlated KL-UCB algorithm is summarized in Algorithm 1.

The correlated TS algorithm is similar except that it models
the success probability p̃r(t) by a Beta distribution. Details of
the algorithm are shown in Algorithm 2.

In summary, the key innovation of the two rate adaptation
algorithms is that they exploit the correlation structure of rates
to improve the efficiency of exploration.

D. Non-stationary Environment.

For the non-stationary environment, we consider it to be
piece-wise stationary. The success probability of each rate
pr(t) evolves slowly over time. We employ the Sliding-
Window (SW) mechanism to track the optimal rate. In this
mechanism, the rate adaptation algorithms only count the
statistics of each rate within a time window of size w. In
particular, the number of times rate k is selected is computed
as follows

nk(t) =

t∑
τ=t−w

1(r(τ) = k)

ns
k(t) =

t∑
τ=t−w

Xk(τ)1(r(τ) = k), (9)

where 1(·) is an indicator function. Algorithm 1 and 2 still
work by replacing the computation of nk(t) and ns

k(t) as
described above. We choose the window size w carefully. On
the one hand, w needs to be large enough to estimate each
rate’s success probability accurately. On the other hand, w
cannot be too large such that it fails to track the changes
in the success probabilities of the rates. In addition, we
would like to emphasize that the pseudo-rewards constructed
in Section III-B are generic and applicable to non-stationary
environments. With the help of pseudo-rewards, the correlated

Algorithm 1 Correlated KL-UCB
1: Inputs: Pseudo-rewards Γ0 and Γ1

2: Outputs: At and r̃∗(t) for t > |R|
3: Initialize: For t = 1, . . . , |R|, play each rate r ∈ R once.
4: p̃r(|R|)← ns

r(|R|) and S|R| ← R
5: Compute p̃r|k(|R|) for r, k ∈ R using (6)
6: r̃∗(|R|)← argmaxr∈S|R|

r · p̃r(|R|)
7: A|R| ← {r ∈ R : mink∈S|R| r · p̃r|k(|R|) ≥ r̃∗(|R|) ·

p̃r̃∗(|R|)(|R|)} ∪ {r̃∗(|R|)}.
8: for t = |R|+ 1, ..., T do
9: for each rate r ∈ At−1 do

10: Compute qr(t− 1) using (8)
11: end for
12: r∗ ← argmaxk∈At−1

k · qk(t− 1)
13: Select rate r∗ and observe Xr∗

14: for each rate r ∈ R do
15: if r = r∗ then
16: nr(t)← nr(t− 1) + 1
17: ns

r(t)← ns
r(t− 1) +Xr∗

18: else
19: nr(t)← nr(t− 1)
20: ns

r(t)← ns
r(t− 1)

21: end if
22: p̃r(t)← ns

r(t)
nr(t)

23: Update p̃r|k(t) using (6)
24: end for
25: St ←

{
r ∈ R : nr(t) ≥ t

|R|
}

26: r̃∗(t)← argmaxr∈St
r · p̃r(t)

27: At ← {r ∈ R : r = r̃∗(t) or mink∈St r · p̃r|k(t) ≥
r̃∗(t) · p̃r̃∗(t)(t)}

28: end for

Algorithm 2 Correlated TS
1: Inputs: Pseudo-rewards Γ0 and Γ1

2: Outputs: At and r̃∗(t) for t > |R|
3: Initialize: ns

r(0) = 1, nr(0) = 2 for r ∈ R
4: For t = 1, . . . , |R|, play each rate r ∈ R once.
5: nr(|R|)← nr(0) + 1 and ns

r(|R|)← ns
r(0) +Xr

6: Sample p̃r(|R|) ∼ Beta
(
ns
r(|R|), nr(|R|)− ns

r(|R|)
)

7: Same as steps 4-6 in Algorithm 1
8: for t = |R|+ 1, ..., T do
9: r∗ ← argmaxk∈At−1

k · p̃k(t− 1)
10: Same as steps 12-20 in Algorithm 1
11: Sample p̃r(t) ∼ Beta

(
ns
r(t), nr(t)− ns

r(t)
)

12: Same as steps 22-26 in Algorithm 1
13: end for

bandit algorithm is able to adjust its estimates of the rates
more quickly when the channel changes. In the next section,
we will verify this experimentally.

IV. SIMULATION RESULTS

In this section, we evaluate four rate adaptation algorithms:
TS, KL-UCB, correlated TS (C-TS), and correlated KL-
UCB (C-KLUCB) by simulation. The simulation setting refers
to 802.11n systems with eight available rates, i.e., R =



(a) steep scenario (b) gradual scenario (c) lossy scenario

Fig. 1. The cumulative regrets of TS, KL-UCB, C-TS, and C-KLUCB under three different stationary scenarios: (a) steep, (b) gradual, and (c) lossy scenarios.

{6, 9, 12, 18, 24, 36, 48, 54} Mbps. Like [8], [17], we consider
three typical scenarios under stationary environments: steep,
gradual and lossy. In steep scenarios, the success probability
is either very high or very low. In gradual cases, the success
probability gradually decreases as the rate increases, and the
success probability of the optimal rate is higher than 0.5.
While for the lossy cases, the success probability of the
optimal rate is lower than 0.5. The success probabilities of the
eight rates under three scenarios are given below (the optimal
rate is marked in bold).

Psteep = {.99, .98, .96, .93, .90, .10, .06, .04}
Pgradual = {.95, .90, .80, .65, .45, .25, .15, .10}
Plossy = {.90, .80, .70, .55, .45, .35, .20, .10}

The cumulative regret of each algorithm is shown in Fig. 1.
We have the following observations. First, in all scenarios, the
regrets of the four algorithms grow sub-linearly, meaning that
all algorithms can identify the optimal rate. This observation
is consistent with the regret bound analysis of KL-UCB [20]
and TS [21]. Second, C-TS and C-KLUCB have lower regrets
than TS and KL-UCB, which demonstrates the superiority of
the correlated bandit model.

V. TEST-BED EXPERIMENT

A. Test-bed implementation

We set up an indoor 802.11n test bed with an Access Point
(AP) and a client. The client is implemented on Dongtintech
AIMB-B2205A which supports Ath9k driver that by default
uses the Minstrel algorithm for rate adaptation. The client runs
Ubuntu 22.04 with a 5.15 kernel. The AP is a Raspberry Pi
4B running the Linux-based OpenWrt backfire 10.03 operating
system with 5.4.132 Linux kernel. The AP uses the 802.11n
Wi-Fi protocol to connect to the client. Edimax EW-7833UAC
Wi-Fi adaptor is used which supports two groups of rates (one
uses 400ns GI for the 8 MCS, and the other uses 800ns GI).

We deploy the four bandit-based rate adaptation algorithms
on the client machine. Since some basic operations, such
as floating point calculation and logarithms computation, are
limited in the kernel space, we re-design the rate adaptation
module. It consists of two parts: user space and kernel space.
The bandit algorithms are implemented and deployed in the
user space using Python. The user space is responsible for
reading the the success and attempt numbers of each rate from

Fig. 2. Bandit rate adaptation architecture

the 802.11 rate adaptation module. With these statistics, the
bandit algorithms in the user space can select the rate for
the subsequent transmission. The kernel space is a modified
802.11 rate adaptation module to receive and pass the se-
lected rate to the Wi-Fi driver. Fig. 2 shows the architecture.
Our design significantly enhances the efficiency of test-bed
implementation. We do not need to implement all the basic
operations from scratching or compiling the kernel module
for debugging. Meanwhile, this implementation also allows
us to deploy and test different rate adaptation algorithms
conveniently.

To create a non-stationary environment, we change the
location of the AP and add some obstacles between the AP
and the client during the test. We use the popular network
measurement tool iperf3 to perform the test with UDP traffic.
The UDP sessions have a packet length of 8KB.

B. Experiment results

We first test the performance of the five rate adaptation
algorithms: TS, KL-UCB, C-TS, C-KLUCB, and Minstrel in
three stationary scenarios which are described in Table I.
For each scenario, the test lasts for 60s. Fig. 3 shows the
average throughput of each algorithm. It can be seen that the
correlated rate adaptation algorithms outperform their classical
versions in E2 and E3, while all algorithms achieve similar
performance in E1.

Next, we test different rate adaptation algorithms in a non-
stationary environment. The sliding window technique is used.
To create such an environment, each scenario in Table I keeps
for about the 60s and gradually changes to the next scenario
within 10s (E1→ E2→ E3). Fig. 4 shows the instantaneous
throughput of each algorithm. We observe that all the bandit



TABLE I
TEST-BED EXPERIMENT SCENARIOS

Scenario Frequency Channel width
E1 The client is close to the AP 2.4 GHz 20 MHz
E2 The client is far from the AP 2.4 GHz 20 MHz
E3 Far from AP, With obstacle 2.4 GHz 20 MHz

Fig. 3. Average throughput of each rate in different channel environments

rate adaptation algorithms are superior to Minstrel. Moreover,
SW-C-TS and SW-C-KLUCB can track the variation of the
radio environment more rapidly and achieve more stable
throughput. Especially in the third scenario, SW-C-KLUCB
and SW-C-TS can find the optimal rate faster than SW-
KLUCB and SW-TS, demonstrating the gain by utilizing the
correlation between different rates.

VI. CONCLUSION

This paper presents a bandit-based rate adaptation model
with correlated rates. The fact that the success probabilities
of different rates are correlated is taken advantage in the
form of pseudo-rewards. We consider four general rules for
constructing pseudo-rewards based on domain knowledge so
they are applicable to both stationary and non-stationary envi-
ronments. These pseudo-rewards help to identify the optimal
rates with less amount of exploration and thus can improve
the sampling efficiency. Based on the correlated bandit model,
two rate adaptation algorithms called C-KLUCB and C-TS are
introduced. Simulation and test-bed experiments are both car-
ried out to evaluate their performance. The results demonstrate
their effectiveness and show that C-KLUCB and C-TS can pro-
vide significant superiority over benchmark algorithms, e.g.,
Minstrel in both stationary and non-stationary environments.
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